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Abstract
We study the zero-temperature Ising chain evolving according to the Swendsen–
Wang dynamics. We determine analytically the domain length distribution
and various ‘historical’ characteristics, e.g. the density of unreacted domains is
shown to scale with the average domain length as 〈l〉−δ with δ = 3/2 (for the
q-state Potts model, δ = 1 + q−1). We also compute the domain length
distribution for the Ising chain endowed with the zero-temperature Wolff
dynamics.

PACS numbers: 02.50.Ey, 05.40.+j, 82.20.Mj

1. Introduction

Interesting and relatively poorly understood dynamical critical behaviours occur when
statistical–mechanical systems are quenched from a disordered phase to their critical points.
For the Ising spin systems, two very popular dynamics were introduced long ago by Glauber [1]
and Kawasaki [2]. Glauber and Kawasaki algorithms are the simplest dynamical rules based on
local moves—single spin flips for the non-conservative Glauber dynamics and spin exchanges
for the conservative Kawasaki dynamics. Glauber’s and other single spin-flip dynamics,
particularly the Metropolis algorithm, have become a powerful tool for understanding the
equilibrium behaviour of the statistical–mechanical systems well away from the critical
temperature [3, 4]. The simulation becomes very slow at criticality, however, and to overcome
this difficulty non-local moves, such as cluster flips, have been suggested. The Swendsen–
Wang [5] and Wolff [6] dynamics are two well-known cluster algorithms that are widely used
in elucidating the equilibrium critical behaviour in statistical physics and lattice field theory.
The dynamical critical behaviour of these algorithms is an active area of research, see [7] and
references therein. This work heavily relies on simulations, e.g., the value of the dynamical
critical exponent for the two-dimensional Ising model endowed with the Swendsen–Wang
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dynamics is known only numerically; analytic studies of the Swendsen–Wang dynamics have
been limited so far to the Ising model on the complete graph, that is to the Curie–Weiss or the
mean-field model [8–10].

The purpose of this paper is to investigate the dynamical aspects of the cluster algorithms—
particularly the Swendsen–Wang algorithm—in the simplest possible setting, that is in one
dimension. The critical temperature is usually Tc = 0 for one-dimensional systems. The zero-
temperature dynamics can be quite peculiar, for example the Ising spin chain subject to the
zero-temperature Kawasaki dynamics freezes [11, 12]. Non-conservative dynamics, however,
usually bring the system to the ground state, e.g., the zero-temperature Ising–Glauber chain
reaches the ground state in a time τ ∼ L2 (here L is the system size), that is the dynamical
exponent is z = 2 for the Glauber algorithm [1, 13]. We will see that z = 0 for the Swendsen–
Wang algorithm in one dimension; more precisely, τ ∼ lnL. The one-dimensional version
of the Swendsen–Wang algorithm is also an appealingly simple model that is reminiscent of
other important models of phase-ordering dynamics like the time-dependent Ginzburg–Landau
equation with no thermal noise (i.e. T = 0) [14, 15]. Furthermore, the one-dimensional
Swendsen–Wang algorithm provides a useful laboratory to probe not merely the dynamical
critical exponent but various much more subtle dynamical characteristics.

This paper is organized as follows. In section 2 we show that the Ising chain endowed
with zero-temperature Swendsen–Wang dynamics exhibits scaling with the average length
growing exponentially with time. Section 2 also contains the derivation of the domain length
distribution and a number of subtle statistical properties of the domains like the density of
domains which never flipped. In section 3 we investigate the Ising chain endowed with
zero-temperature Wolff dynamics. This model has been previously studied by Derrida and
Hakim [16]; here we further analyse the model, and particularly determine the domain length
distribution. A summary is given in section 4.

2. Swendsen–Wang dynamics

In one dimension, the Ising spin chain can be thought of as an array of contiguous alternating
domains of up and down spins. At zero temperature, the Swendsen–Wang dynamics accounts
for randomly choosing a domain and flipping it. The flipping of a domain I implies that it
merges with its left and right neighbouring domains I− and I+ thus forming a single domain
I− ∪ I ∪ I+.

2.1. Domain length distribution

Let Nl(t) be the number of domains of length l and N(t) = ∑
l�1 Nl(t) is the total number of

domains. The average number of domains that flip in an infinitesimal time interval �t is equal
to N(t)�t . In every flipping event three domains merge into a single one, so N(t) changes
according to

N(t + �t) = N(t) − 2�tN(t). (1)

Similarly, Nl(t) evolves according to

Nl(t + �t) = Nl(t) − 3�tNl(t) + �t
∑

i+j+k=l

Ni(t)

N(t)
Nj (t)

Nk(t)

N(t)
. (2)

The term 3�tNl(t) accounts for the loss that occurs when the domain or either of its neighbours
is flipped, while the last term on the right-hand side of equation (2) accounts for the gain due
to the flipping of a domain of length j followed by immediate merging with two adjacent



Swendsen–Wang and Wolff algorithms 6919

domains of lengths i and k. Equation (1) is obviously exact. The linear loss term in (2)
is also exact, while the nonlinear gain term is exact only if the sizes of adjacent domains
are uncorrelated. However, whenever a domain merges with two adjacent domains, the
resulting domain does not acquire any correlation with the neighbours, i.e. correlations are
not dynamically generated. (See [15] for a detailed justification in the context of a somewhat
similar model, viz the noiseless time-dependent Ginzburg–Landau equation in which domains
also merge with their neighbours.) Therefore, if initially the domain lengths were uncorrelated,
they remain uncorrelated at all later times and equation (2) is exact.

The total length of the system is L = ∑
l�1 lNl(t). In the thermodynamic limit L → ∞,

it is convenient to use the domain length densities nl(t) = Nl(t)/L and the (total) domain
density n(t) = ∑

l�1 nl(t) = N(t)/L. From (1) we find that the domain density evolves
according to

dn

dt
= −2n. (3)

Solving (3) gives n(t) = n(0)e−2t . Therefore the average domain size 〈l〉 = 1/n increases
exponentially. In contrast, the average size exhibits an algebraic growth 〈l〉 ∼ t1/z [17] in
most models describing domain coarsening following a quench to zero temperature.

Likewise, the equation for Nl(t) leads to

dnl

dt
= −3nl +

∑
i+j+k=l

ninjnk

n2
. (4)

The form of equation (4) suggests to consider normalized densities ρl(t) = nl(t)/n(t). These
quantities satisfy

dρl

dt
= −ρl +

∑
i+j+k=l

ρiρjρk. (5)

Equations (4)–(5) are mathematically similar to equations describing the three-particle
coalescence process [18] and can be solved accordingly. Introducing the generating function

R(t, x) =
∑
l�1

xlρl(t) (6)

we convert an infinite system of equations (5) into a single equation

∂R

∂t
= −R + R3. (7)

Solving (7) gives

R(t, x) = e−tR0(x)√
1 − (1 − e−2t )R2

0(x)

(8)

with R0(x) ≡ R(0, x). For instance, consider the evolution starting from the highest energy
antiferromagnetic state. In this case, ρl(0) = δl1, i.e. R0(x) = x. Inserting this into (8) and
expanding in powers of x we obtain ρ2l (t) ≡ 0 and

ρ2l+1(t) = e−t

(
1 − e−2t

4

)l (
2l

l

)
. (9)

The original densities read

n2l+1(t) = e−3t

(
1 − e−2t

4

)l (
2l

l

)
. (10)
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In the scaling limit l, t → ∞ with the scaling variable

L = l e−2t = finite (11)

the densities become

nl(t) = e−4tF(L) F(L) = 1√
2πL

exp(−L/2). (12)

For other initial conditions it is quite difficult to extract explicit results for ρl from the general
solution (8) for the generating function. The most natural situation arises when the system
at T = ∞ is suddenly quenched to T = 0. The appropriate initial condition is completely
uncorrelated with each spin taking the values ±1 independently and with equal probabilities.
Then ρl(0) = 2−l , or R0(x) = x/(2 − x) thus leading to a relatively simple exact expression
for the generating function. The resulting ρl admits a neat expression

ρl(t) = τ l
2F1

(
l,

1

2
; 1; 1 − 2τ

1 − τ

)
τ = 1 +

√
1 − e−2t

2
. (13)

The apparent simplicity of this solution is illusory as (13) involves the hypergeometric function.
Fortunately, the most interesting scaling behaviour (12) is universal, i.e. independent of initial
conditions (modulo the assumption that the decay ρl(0) versus l is sufficiently steep). Therefore
in the following we focus on the antiferromagnetic initial condition.

Note that the domain length distribution nl(t) is beyond the reach of analytical approaches
[17] for the majority of models of domain coarsening; e.g., for the Ising chain endowed with
zero-temperature Glauber dynamics the distribution nl(t) is still unknown although a few exact
and approximate results are available [19, 20]. The Swendsen–Wang dynamics is obviously
more tractable than the Glauber dynamics—we determined nl(t) for the antiferromagnetic
initial condition and an exact scaling expression in the general case.

2.2. Domain number distribution

For the Swendsen–Wang dynamics it is also possible to analytically probe various historical
characteristics. The simplest such quantity is the density mp(t) of domains composed of p
‘parent’ domains that never flipped. (Each such domain can of course include domains that
flipped during the time interval (0, t).) The domain number distribution mp(t) is formally
defined as follows [20]. Initially mp(0) = δp1. In every merging event, the central domain
flips while the two adjacent domains do not flip; therefore if they have α and β parents,
respectively, the resulting domain has α + β parents. The domain number distribution mp(t)

evolves as follows:
dmp

dt
= −3mp +

∑
α+β=p

mαmβ

n
. (14)

A solution to these equations has an exponential form

mp = Aap−1. (15)

This ansatz reduces an infinite system (14) to a couple of differential equations

dA

dt
= −3A

da

dt
= n−1A (16)

where n(t) = e−2t , see equation (3). Solving (16) subject to A(0) = 1, a(0) = 0 (implied by
the initial condition mp(0) = δp1), we finally obtain

mp(t) = e−3t (1 − e−t )p−1. (17)
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Thus P = p e−t is the scaling variable and the scaling form is simply exponential:

mp(t) = e−3tG(P ) G(P ) = e−P . (18)

The survival of a domain with and without merging is characterized by the domain
persistence exponents ψ and δ, which were investigated for the Ising–Glauber [20] and
Ising–Kawasaki [21] spin chains. (Domain persistence and closely related cluster persistence
exponents were also studied for several other models [22–25].) The exponent δ describes the
decay of primordial domains

m1 ∼ 〈l〉−δ. (19)

The exponent ψ counts the average number of parents per domain 〈p〉 ≡ ∑
pmp/

∑
mp:

〈p〉 ∼ 〈l〉1−ψ. (20)

In the present case, m1 = e−3t and 〈p〉 = et , while the average domain length is 〈l〉 = e2t .
Therefore

δ = 3
2 ψ = 1

2 . (21)

Even for the simplest models, these exponents are still known only numerically, e.g., δ ≈ 2.54
and ψ ≈ 0.252 for the Ising–Glauber spin chain [20], and δ ≈ 2.12 and ψ ≈ 0.39 for the
Ising–Kawasaki spin chain [21]. For a few models, however, the domain persistence exponents
have been computed analytically [20, 22, 23], e.g., for the random field Ising–Glauber spin
chain δ = ∞ and ψ = (3 − √

5)/4 = 0.190 983 . . . [23].

2.3. Domain length-number distribution

The (normalized) domain length-number distribution ρlp captures both the spatial and
historical characteristics of the coarsening domain mosaic and contains previous distributions:
ρl = ∑

p ρlp and mp = n
∑

l ρlp. The domain length-number distribution satisfies

dρlp

dt
= −ρlp +

∑
i+j+k=l

∑
α+β=p

ρiαρjρkβ. (22)

To determine ρlp we use the two-variable generating function

R(t, x, y) =
∑
l�1

∑
p�1

xlypρlp(t). (23)

Multiplying equation (22) by xlyp, summing over all l, p � 1 and using already known result
(8) for the one-variable generating function

∑
j xjρj (t), we find that R satisfies

∂R
∂t

= −R + R2 e−t x√
1 − (1 − e−2t )x2

. (24)

Solving this equation subject to R(0, x, y) = xy we obtain

R(t, x, y) = e−t xy

1 − y + y
√

1 − (1 − e−2t )x2
. (25)

Expansion in y is simple and for every p we get∑
l�1

xlρlp(t) = e−t x
(
1 −

√
1 − (1 − e−2t )x2

)p−1
. (26)
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The expansion in x is also straightforward and it leads to a series representation for ρlp. Of
course, ρlp = 0 for even l’s. For odd l’s we find

ρ2l−1,p = 0 for l < p

ρ2p−1,p = e−t

(
1 − e−2t

2

)p−1

ρ2p+1,p = 1

2
(p − 1) e−t

(
1 − e−2t

2

)p

ρ2p+3,p = 1

8
(p − 1)(p + 2) e−t

(
1 − e−2t

2

)p+1

etc. To extract the scaling behaviour, it is more convenient to use (25) rather than (26). Writing

x = 1 − e−2t ξ y = 1 − e−t η (27)

and taking the limit t → ∞ we simplify (25) to

R(ξ, η) = 1

η +
√

1 + 2ξ
. (28)

In the scaling limit l, p, t → ∞ with the scaling variables

L = l e−2t = finite P = p e−t = finite (29)

the domain length-number distribution admits the scaling form

ρlp(t) = e−3tH(L, P ). (30)

Inserting (27), (30) into equation (23) and replacing summation by integration we convert the
two-variable generating function into the double Laplace transform

R(ξ, η) =
∫ ∞

0
dL e−ξL

∫ ∞

0
dP e−ηPH(L, P ). (31)

Using equations (28), (31) and performing the inverse Laplace transform we obtain

H(L, P ) = P√
2πL3

exp

(
−L

2
− P 2

2L

)
. (32)

Comparing (32) with individual distributions (12) and (18) we see that the domain length-
number distribution does not factorize even in the scaling limit.

From the length-number distribution one can extract a lot of things, e.g. the fraction of
persistent spins, i.e. spins which have not flipped during the time interval (0, t); this quantity
usually decays as 〈l〉−θ , where θ is the persistence exponent [26]. For the antiferromagnetic
initial condition, for instance, the number of persistent spins in a domain is exactly equal to
the number of parents. The average number of parents is

〈p〉l =
∑

p�1 pρlp∑
p�1 ρlp

≡ ρ−1
l

∑
p�1

pρlp. (33)

In the long time limit, we can use (32) and replace the summation by integration. This leads
to the asymptotic

〈p〉l →
√

πl

2
when l → ∞. (34)

The fraction of persistent spins n−1 ∑
l�1〈p〉lnl is now computed to give e−t = 〈l〉−1/2. Thus,

the persistence exponent is θ = 1/2.
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2.4. The q-state Potts model

Some of the above calculations can be generalized to the case of the Potts model. For the
q-state Potts model, each domain is in one of the q possible states, and each time a domain
is updated it adopts the state of one of the two adjacent domains. The updating of a domain
results in merging of all three domains with probability 1/(q − 1) while with probability
(q − 2)/(q − 1) only two domains merge. Therefore the average number of domains lost in
every merging event is 2 × 1

q−1 + q−2
q−1 = q

q−1 , leading to

dn

dt
= − q

q − 1
n. (35)

Therefore the average domain size 〈l〉 = 1/n increases exponentially for arbitrary q.
The number distribution mp(t) is also readily computable for the q-state Potts model.

One has
dmp

dt
= − q + 1

q − 1
mp +

1

q − 1

∑
α+β=p

mαmβ

n
. (36)

This equation admits the exponential ansatz (15) that reduces (36) to a couple of differential
equations

dA

dt
= − q + 1

q − 1
A

da

dt
= A

(q − 1)n
(37)

where n = exp
[− q

q−1 t
]
. Solving (37) subject to the initial conditions A(0) = 1 and a(0) = 0

(implied by mp(0) = δp1) we obtain

mp(t) = Qq+1(1 − Q)p−1 Q(t) ≡ e−t/(q−1). (38)

Re-expressing the quantities m1 = Qq+1 and 〈p〉 = Q−1 through the average domain
length 〈l〉 = n−1 = Q−q we find that the domain persistence exponents defined via
equations (19)–(20) are given by

δ = q + 1

q
ψ = q − 1

q
. (39)

The exponents thus obey the sum rule δ(q) + ψ(q) = 2.
Now consider the length distribution. Particularly, the normalized domain length

distribution evolves according to

dρl

dt
= −ρl +

1

q − 1

∑
i+j+k=l

ρiρjρk +
q − 2

q − 1

∑
i+j=l

ρiρj . (40)

From this equation, we find an implicit relation for the generating function (6),

(1 − R)q−1(R + q − 1)

Rq
= eqt (1 − R0)

q−1(R0 + q − 1)

R
q

0

.

This relation is a polynomial of R of degree q. Hence it is impossible to determine an explicit
relation for the generating function, R(t, x) = F[t, R0(x)], apart from the Ising case (q = 2)

and next two cases q = 3, 4. The explicit expressions for q = 3, 4 are very involved so the
exact computation of nl(t) looks daunting.

Rather than seeking an exact solution, let us consider the asymptotic behaviour. The
scaling ansatz

ρl(t) = nF(L) L = nl (41)
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recasts (40) as

F + qL
dF
dL

+ F ∗ F ∗ F + (q − 2)F ∗ F = 0 (42)

where the symbol ∗ denotes the convolution operation, so that F ∗ F is the usual convolution∫ L

0 dL1F(L1)F(L−L1), and F ∗F ∗F = ∫ L

0

∫ L

0 dL1 dL2F(L1)F(L2)F(L−L1 −L2). The
Laplace transform (s) = ∫ ∞

0 dL e−sLF(L) satisfies

qs
d

ds
= 3 + (q − 2)2 − (q − 1) (43)

whose (implicit) solution reads

s = (1 − )

[
 + q − 1

qq

] 1
q−1

. (44)

The sum rules
∑

ρl = 1 and
∑

lρl = n−1 lead to∫ ∞

0
dLF(L) = 1

∫ ∞

0
dLLF(L) = 1. (45)

These two constraints determine the first two constants in the small s expansion of the Laplace
transform: (s) = 1 − s + · · · . This behaviour was taken into account in fixing a constant in
the general solution to equation (43).

To complete the task, we must find (s) from (44) and then perform the inverse Laplace
transform. The first step therefore requires finding a root of the polynomial of  of degree q.
Thus it is apparently impossible to find an explicit scaling solution when q � 5. However,
we can deduce the most interesting asymptotics for an arbitrary q. For instance, equation (44)
yields  → (1 − q−1)1/qs−1+1/q as s → ∞, from which

F(L) →
(
1 − 1

q

) 1
q

�
(
1 − 1

q

)L
− 1

q as L ↓ 0. (46)

The large L behaviour of F(L) is reflected by the type of the (closest to the origin) singularity
of its Laplace transform. From equation (44) we find that the singularity is the branch point
located at s∗ = −q−1/(q−1), namely

 → 2− 1
2 q

q−2
2(q−1)

[
s + q

− 1
q−1

]− 1
2

leading to

F(L) → q
q−2

2(q−1)
1√

2πL
exp

[ − Lq
− 1

q−1
]

(47)

as L → ∞. Thus the large L behaviour is qualitatively similar for all q, while the small L
behaviour is affected by the number of states.

The Swendsen–Wang dynamics of the q-state Potts model is particularly simple in the
q → ∞ limit when only two adjacent domains can merge. The domain number distribution
is trivial in this case, mp(t) = e−t δp1. The normalized domain length distribution satisfies

dρl

dt
= −ρl +

∑
i+j=l

ρiρj . (48)

This system of equations resembles (14) and the solution is accordingly found by seeking
ρl(t) in an exponential form like (15). For initially uncorrelated Potts spins, all domains have
initial length 1 when q = ∞. Therefore ρl(0) = δl1 and the solution reads

ρl(t) = e−t (1 − e−t )l−1. (49)
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The scaling form of the domain length distribution is exponential, F(L) = e−L; of course, this
result can also be derived from (44) which in the q → ∞ limit simplifies to  = (1 + s)−1.
An apparent contradiction of the pure exponential scaled domain length distribution and the
general large L asymptotic (47) is the indication that the limits q → ∞ and L → ∞ do not
commute.

3. Wolff dynamics

At zero temperature, the Wolff dynamics accounts for randomly choosing a spin and flipping
the whole domain containing that spin. The flipping of a domain I again implies that it merges
with its left and right neighbouring domains I− and I+ to form a domain I− ∪ I ∪ I+. In
contrast with the Swendsen–Wang dynamics, the flipping of a domain now occurs with a rate
proportional to its length. Therefore the domain density decreases with constant rate

dn

dt
= −2 (50)

i.e. n(t) = 1 − 2t and the whole system reduces to a single domain at tc = 1/2.
The governing equations for the domain length densities read [16]

dnl

dt
= −lnl − 2

nl

n
+

∑
i+j+k=l

jninjnk

n2
. (51)

We again use the normalized densities ρl(t). They satisfy

dρl

dt
= −lρl +

∑
i+j+k=l

jρiρjρk. (52)

The generating function (6) satisfies

∂R

∂t
= −x

∂R

∂x
+ xR2 ∂R

∂x
. (53)

Changing variables from (t, x) to (T ,X) ≡ (t, t − ln x) removes the first term on the right-
hand side of equation (53):

∂R

∂T
= −R2 ∂R

∂X
. (54)

Rewriting (54) for X = T (R,X) gives

∂X

∂T
= R2 (55)

which is solved to yield X = F(R) + R2T , or

t − ln x = F(R) + R2t (56)

with F(R) depending on initial conditions. For the antiferromagnetic initial condition
R0(x) = x and thence F(R) = −ln R, so the exact solution (56) becomes

x = R et−R2t . (57)

Clearly, equation (57) gives an expansion of x in terms of R. We are seeking the opposite,
R = ∑

ρlx
l . To determine ρl we write

ρl = 1

2π
√−1

∮
dx

R(x)

xl+1
= 1

2π
√−1

∮
dR

Rx ′(R)

[x(R)]l+1
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which is combined with equation (57) to give

ρl(t) = e−lt

2π
√−1

∮
dR

[
elR2t

Rl
− 2t

elR2t

Rl−2

]
. (58)

An elementary computation shows that ρ2l ≡ 0 and

ρ2l+1(t) = (2l + 1)l−1

l!
t l exp[−(2l + 1)t]. (59)

Since nl = nρl and n = 1−2t , the densities vanish at tc = 1/2. Note also that in the proximity
of the critical point (i.e. when n → 0 and l → ∞), equation (59) simplifies to

ρl(t)  π−1/2l−3/2 exp(−ln2/4). (60)

This expression was previously derived in [16] by a direct analysis of the generating function
near the critical point. Equation (60) shows that 〈l〉 = n−1 does not characterize the domain
length distribution: almost all domains are short with lengths of order 1 but because the
domain length distribution is algebraic, ρl ∝ l−3/2 with a cutoff length of the order of n−2,
and the average domain length diverges as n−1.

The single domain covers the entire spin chain at tc = 1/2, i.e. the system undergoes a
gelation transition. This transition differs from the ordinary gelation transition that occurs in
mean-field models of polymerization [27, 28] and evolving random graphs [29] where the giant
component that is born at the critical time undergoes a long period of growth before it engulfs
the entire system. The difference from the ordinary gelation transition is not surprising: in one
dimension, the giant component must cover the entire system, so the transition is discontinuous,
while in the mean-field models the transition is continuous. Despite this important physical
distinction, the domain length distribution (60) is very similar to the cluster size distribution
in polymerization [28] and the component size distribution in evolving random graphs [29].

4. Summary

We demonstrated that the Ising chain endowed with the zero-temperature Swendsen–Wang
dynamics exhibits scaling with the average length growing exponentially with time. We
computed the domain length distribution in special cases, e.g. for the antiferromagnetic initial
condition and the random initial condition. The scaled domain length distribution was shown
to be a product of a power law and an exponential over the entire range of the (scaled) length.
We also computed the domain number distribution, the domain length-number distribution and
the domain persistence exponents. The domain length-number distribution does not factorize
into the product of the single variable distributions. Some of the calculations have been
generalized to the Potts model; in particular, the domain number distribution and the domain
persistence exponents have been obtained.

We also studied the Ising chain endowed with the zero-temperature Wolff dynamics and
showed that the system undergoes a kind of gelation—below the critical time the total number
of domains is an extensive variable (proportional to the system size) while at the critical time
the entire system gets covered by the single domain. This gelation transition is discontinuous
since in one dimension, the giant component must cover the entire system; in contrast, in the
mean-field models the gelation transition is continuous. Still we found that the domain length
distribution in the zero-temperature Ising–Wolff chain is mathematically similar to the cluster
size distribution in polymerization.
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